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This paper presents the development of a mesh adaptation module for a multilevel Cartesian solver.
While the module allows mesh refinement to be driven by a variety of different refinement parameters, a central
feature in its design is the incorporation of a multilevel error estimator based upon direct estimates of the local
truncation error usingt-extrapolation. This error indicator exploits the fact that in regions of uniform Cartesian
mesh, the spatial operator is exactly the same on the fine and coarse grids, and local truncation error estimates
can be constructed by evaluating the residual on the coarse grid of the restricted solution from the fine grid. A
new strategy for adaptive h-refinement is also developed to prevent errors in smooth regions of the flow from
being masked by shocks and other discontinuous features. For certain classes of error histograms, this strategy
is optimal for achieving equidistribution of the refinement parameters on hierarchical meshes, and therefore
ensures grid converged solutions will be achieved for appropriately chosen refinement parameters. The robust-
ness and accuracy of the adaptation module is demonstrated using both simple model problems and complex
three dimensional examples using meshes with from D10 cells.

1 Introduction While the research on adjoint-based mesh optimization is
very exciting, two drawbacks make it currently unattractive
¥or a general purpose analysis code. First, if the Jacobians are
bt already present in the solver, it is an expensive proposi-
tion to form them solely to drive the adaptation. Secondly
d more fundamentally, many problems of interest have

f'[?peting requirements that cannot always be encapsulated

adjoint operators. As a consequence, error estimation g, 5 single output functional. For example, a user may wish
adaptation for fluid mechanics has evolved over a differepy optimize a single simulation for lift, drag and pitching

path. The simplest methods in the literature are gradient ; . IR

undivided difference-based feature detectdd. While ﬁ%renseen;'mwm;rrgsut{“rpecg&tt; g’;lénrl]zoetlt;/oer: i':_ﬁ;;]rg_ntly an area
these methods have been extremely successful for various

classes of prouen{g];[?] their lack of formalism makes In this paper, we develop a new multilevel adaptation module
them difficult to apply blindly to problems far from estabfor use on adapted Cartesian meshes with embedded bound-
lished experience. Indicators based upon estimates of int@fies. Figure 1 shows a sample hierarchy of such meshes used
polation errol8l®] |end some of the missing formalism.by a new, parallel multigrid solvEr’! The fact that these
However, since these essentially compute the local curvat@@arse meshes can be automatically generated makes multi-
of a representative variable or combination of variables, thégvel error estimation a viable alternative, even for grids
are not clearly superior (or different from) straight featur@round very complex geometries. Seeking to take advantage
detectior® The multilevel error estimators from the litera-Of this fact, we explore Richardson extrapolation-like error
ture on Adaptive Mesh Refinement (AMR) were amoan thestimators which exploit the hierarchical nature of adapted
first Richardson extrapolation-like error estimafELL12["  Cartesian grids. Even without the sensitivity information pro-
but have been only narrowly used outside the AMR commiyided by adjoint-based approaches, the module will still offer
nity. More recently, there has been interest in multilevel errbtige savings ovea priori mesh enrichment. The estimators
indicators which use the residual of a higher order interpolée present are light-weight and both fast to implement and
tion of the existing solution to estimate the locafXecute. They also leverage much of the machinery already
error[131141115] This approach is attractive since it can béuilt into many multigrid solvers.

combined with solution of an adjoint problem to produce 8jnce Cartesian grid refinement is restricted to cell subdivi-
mesh adaptation strategy that seeks to Minimize, eIor Is@n - r-refinement), the approach is intrinsically discrete.
specific integral quantity of engineering interd3k!16] The _ There exists a necessary reliance upon a refinement threshold
hope of these techniques is that, for the cost of the adjojpiich selects cells destined for subdivision. Our work exam-
solution and Jacobian storage, one can produce a mesh the topic of threshold selection in detail. We develop a
reduces only those.errors tha_t are important to the Pr0b|e”}ﬁéthodology for robustly setting a threshold which also
hand, rather than simply equidistributing the error. ensures consistency of the adaptive process. The approach
both controls the level of error in the domain and equidistrib-
- . utes the remaining error as fast as possible within the restric-
" Research Scientist, Senior Member AIAA tions of hierarchical (nested) refinement. Given a robust

t i . . .
Professor, Courant Institute, Member AIAA _ _strategy for setting the adaptation threshold, adaptive cases
This paper is declared a work of the U. S. Government and is not subject to

copyright protection in the United States.

HILE error estimation using local gradient recover

techniques has long been popular in structural mech
ics and other disciplines governed by elliptic syst@ﬂns;ch
rigorous error estimates are generally not available in flu
mechanics where the governing equations contain non-s
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Figure 1:Hierarchical sequence of partitioned meshes around lifting body configuration used by parallel
flow solver of ref. [17].

may be fully automated. This reduces the sensitivity of the 1 R(u(x, 1))
results to user experience/intervention which has long been aLTEj, x(x. 1) = z[”(x’ t+k)—u(x, 0)] + — 3)
drawback of adaptive methods.

If the problem reaches a steady state, then

2 Multilevel Error Estimation u(x,t+k) = u(x,t) and we can drop the dependence on
time.

Multilevel Richardson-type error estimators like those in [12]

are attractive because of their low cost and firm theoretical LTE, (x) = R(u(x)) (4)

underpinnings in smooth solutions. In addition to developing h h

refinement parameters based on these estimates, we also
develop first and second-difference based feature detectBruation 4 is instructive since it relates the local truncation
which can serve useful roles as refinement parameterseimor to the discrete residual operd®r) and the cell dimen-

practical examples. sionh. Furthermore is clear from the derivation that in multi-
ple dimensionsLTE(fc) = Residual/jd  wherg is the number

2.1 Local Truncation Error Measurement of spatial dimensions of the domain.

Consider the 1-D wave equatiomn, + Au, = 0 discretized _ _ )

with forward Euler in time and some numerical spatial differ2-2 Local Truncation Error on Uniform Cartesian

ence scheme using a timeskepnd a cell dimensiom, Meshes
1 ‘l 1 Equation 4 is useful since it permits direct measurement of
]—C(U]’? - U]'.i) + Z(FR‘].—FLJ) =0. () the local truncation error of a particular numerical method on

an actual computational grid for any problem that has an
U; is the discrete approximation to the continuous solutioexact solution. One such example is the supersonic vortex
u(x, 1), in cellj at timen, while F|_; andFg jare the numeri- model problem used in reference 18. Figure 2 outlines the
cal fluxes through the left and right boundarieg afid con- problem and shows 4 sample telescoping meshes. The actual
tain the details of the spatial operator. The difference of teeshes used had from 130 to 7800 control volumes. After
numerical fluxes is the residual and the discrete equation gaitialization with the exact solution, the local truncation

be written more compactly as error was computed within each cell by dividing the residual
by the cell volume (following 82.1 and eq. (4)) using the
R(U! Euler solver in reference 17 without limiters.
l(U;:}+1_Ui.'I)+ ( j):o, (2) . .
kY7 J h The Ly norm of theLTE in density was computed for each

mesh and is displayed in figure 3 as a function of the number

of cells in each mesh. Performing a regression analysis on the
Cartesian mesh data reveals a slope of 2.11. For smooth solu-
Thelocal truncation error LTE, measures how well the dis- tions, one can show that the global error is also second-

crete equation models the actual PDE throughout the domapnde®!.

It is defined by replacing the approximate solutiﬁiﬁ with

the exact solutiom(x, 1) in equation (2). Sincel/; = exactly

satisfies the difference equation, the exact solution will not,

and the difference will be the local truncation error,

LTE, (.-

where the discrete residual operaR{s) now contains all
details of the numerical flux balance for gell
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subsantially higher local errors since we depend on the sub-
traction of two large numbers to produce a near zero result.

2.3 Estimation of LTE on Nested Multilevel Meshes

Since thed.TE can be computed for each cell in the domain, it
provides an excellent basis for constructing a refinement
parameter within each cell. Unfortunately, since few prob-
lems of practical interest have an exact solution, we must
develop a method of estimating th€E within each cell.

The fact that we could reasonably draw straight lines through
the data in figure 3 established the local and global order of
the method. We can express this more formally by recalling
that for a discrete method with local orgeand a smooth
solution, there exists a consta&By, such that

p(r) = p, 01+ L3ar 1 -
o

Figure 2:Overview of supersonic vor
tex model problem from ref. 1
used to investigate local truncat

|LTE, (%) < . (5

e _ : Section2.2 also established that for the solver in reference
S.rrozr.,lNag. 50{‘?_'“2023; I\/in—-gi.a.o, S 17, p was around 2 wher¢| is the 1-norm. Furthermore,
no b o _ ' since the RHS of equation 5 vanishes for simate method
For comparison, figure 3 also contains the results of the safgeypviously also consistent. Consistency implies that when
experiment performed with three types of body-fitted gridss small, the discrete solutias) , in cellj of a mesh will be a
(1) regular, nearly unit aspect ratio quads, (2) right trianglegod approximation to the exact solutisf¥) , and this

made by subdividing the quads, and (3) a "quality” triangulasatement is the basis of our multilevel error estimation pro-
tionl?% in which no angle was less than 29°. All methodgedyre.

used the same numerical scheme. While the details of this . .
experiment are contained in the Appendix, figure 3 displaysSSume that the numerical method has converged on a fine
the results. The asymptotic slopes of all four mesh types &ad With mesh spacing so that the residual of the discrete
shown in the figure. We note that the slopes of all but tfgolution will be zero for every cglin the domain.
“quality” mesh are similar but that the level of error on the R,(U) = 0 (6)
Cartesian grids is consistently 6 to 10 times lower than the J
other grids over the full range of problem sizes. While thessince the method is consistent, the current discrete solution is
results may be too narrow to generalize, this figure empassumed to be close to the exact solutigp, Du(%) . An
sizes the fact that sindeTE measurement is bascally a fluxestimate of the local truncation error on a coarse grid with
balance, even minute irregularities in the mesh can produzesh spacingd can then be written by substituting the dis-
crete solution on the fine grid for the exact solution in equa-

10°F ' ' ‘ ' ' ] tion 4.
e ] e
e 1 R :
e 1 LTE,(3) = Ruall Uin) - Yin) 7)
10 162 .
s F L LO%‘ 3 Falowing equation 7 we obtain an estimate of tA& on the
R 1 ] coarse grid by first restricting the discrete solution on the fine
é’ i e 1] grid U; , to a coarser grid using the interpolation operator
; 1077 e : .@ E I’ and then evaluating the discrete residual of the restricted
g F 2.28 . solution on the coarse grid. Sindg,, satisfied the numerical
5000 1 heme on the fine grid, the restricted solutif}ty, will
4 | . | sc gnd, i
) ) not, in general, produce exactly zero residual on the coarse
O Cégt;"]‘t;“ “Tﬂggzgulaﬁm 210 grid. Thus, in the same way that the exact solution provided a
r Regular Quads 1 . means of measuringdr, in §2.1, the discrete solution on the
| #— Regular Right Triangles 1 fine grid provides a method of estimating the error on the
N . . | . . ‘ coarse grid. Adaptively refined Cartesian meshes nest
10700 1000 10000 exactly. Therefore, the residual opera®is exactlythe same

Number of control volumes on coarse and fine meshes. This permits us to apply equation
Figure 3:L, norm of LTE in density for supersonic vortex 5 on a cell-by-cell basis. The coarse grid estimates are then
model problem on sequence of 4 meshes. The asympsed to _trigg_er qell refinement on fin_e gri_d. _This meth_od of
totic slope of each curve is labeled. Further details ¢'or estlmatl_on2|1s] known asexrapolationwithin the multi-
this experiment are presented in Appendix A. grid community?! and the perfectly nesting residual opera-
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tors that occur on Cartesian grids makes its use extremely
attractive here. Related work was done in [12] using a diffef@) Fine Mesh
ent estimation technique. DK

In the present work, the restriction operaffr  is a volume -
weighted average, which is the same as that used by the mul- T
tigrid smoother used for convergence acceleration. By using NP
|
|

the prolongation operator from the multigrid scheme as well,
we are able to construct refinement parameters on the fine ‘
mesh for the cost of one restriction, one coarse mesh residual [\
evduation and one prolongation. Since these operations use
machinery which already exists in the multigrid solver, they Cells with irreqular C S

. A ' ? ells with irregular
may be implemented with little effort. fine mesh stencil  gianeil on coarse mesh

2.4 Mesh Irregularities (b) Coarse Mesh ~{

The preceding section examined error estimation on hierar- .
chies of uniform Cartesian meshes. Adaptively refined Carte- = .b
sian meshes, however, introduce some real-world <l -
complications which need discussion. As mentioned in the
final paragraphs of §2.3, the multilevel error estimation pro- B
cedure relies upon use of the same spatial opdRaiorboth °
the fine and coarse meshes. WiRjgandR,, are clearly the :
same in uniform regions of the grid, at adaptation boundaries
and cut-cells the situation merits closer examination.

olejolejo|eo]eo]e

.

. . ' . .Figure 4:lllustration of difference stencils against adapta-
Figure 4 depicts a sample fine grid (a) and the corresponding’ tion boundary between cells of different ?evels. CeIIF?s in

coarse cells (b) near a simple refinement boundary. The adap- the shaded region of the fine mesh restrict their solution
tation boundary introduces irregularities into the connectivity  into the corresponding coarse mesh shown. Since the
graph which locally changes the residual operator. Thus, on residual operator on this coarse mesh is different from
the fine mesh (fig. 4a) all the cells which are immediately that in the corresponding cells on the fine mesh, eq.5 is
adjacent to the adaptation boundary have irregular stencils. not valid.

The situation is the same on the coarse mesh (Fig. 4b) and

since the residual operators on the two meshes must be idkéspection of figure 4 demonstrates that this irregularity
tical for equation (5) to hold, the multilevel error estimatogffects a larger portion of the mesh than one may initially
from §2.3 can't be accurately constructed for the fine celfgispect since the cell next to an interface has its gradient cal-
shown shaded in figure 4a. Since this difficulty is associatédlation affected. This cell in turn contaminates the stencil of
with mesh irregularity, it appears in the residual operator @f cell two away from the interface. As was demonstrated in
cut-cells as well. figure 3, even a minor irregularity like this can lead to dra-

. . . ... matically higheL TE. Additionally, since it is the coarse grid
While the formal basis for local truncation error eSt'mat'OQ/hich provides the estimates, the pollution can extend as far

makes it preferable to straight featu.re_ detection, there ?{S 4 cells from the interface on the fine grid, so that the fine
several drawbacks that make them difficult to use - even fid cells have no reliable estimate of their oehiflg. 4). To

%3;?5@2 nz;lrjrllte”e\;glrur:qer?eh;j& E)Irts)té ;or ?e:jelt'glﬂgtﬂrhoer fg roduce grids with a stencil of 5 regular cells in each direc-
J S S ! S ppl o , large regions of uniformly refined cells need to be gen-
and fine grids. Thus, at mesh irregularities such as grid inter-,

; ed in the mesh. Althougkestimates have been used with
faces and cutcells, the procedure described above doesdﬂrg t success in block structured AMR methods, they are
produce a reliable estimate. Cole#iaall?? present a nice i

. : ; . ; -~ somewhat more difficult to implement on unstructured multi-
treatment of this problem in which the estimate is multipliegl, o c4rtesian. Asymptotic arguments contend that irregular
by the number of cells of that type. In essence, this scaleg

. 2 . _ .
cell's contribution to the error by the number of affected cell6(Nse,)afe|T§ nfll Qe?}rfct?cne@ﬂ:& e(z/esjlrs 'stne’ rza?(;s;br;lt?ine

While the local truncation error at an interface is larger tharﬁ

at a uniform cell of the finer or even the coarser level, relat shes can fave as many as 30% of the cells contaminated
uni ' v . JEvel, irregularity> When the neighbors of cells directly affected
work on convergence theory for non-uniform 94r]|ds sugges

that the estimate is still overly pessimiéﬁ@.[ (These e also counted,TE estimates on over half the mesh may

results point out that its possible f61) LTE to still pre- have some contamination.

serveO(h) global accuracy.) At present, we simply ignoreéA second problem withTE estimates is the need for a some-
error estimates at interfaces and cut cells, and rely on a bufhat reliable solution to have already been computed. The
ering procedure to supply error values using piecewise con-

stant extrapolation of the error estimates from neighboring o ]
cells. T. The situation is worse on coarse meshes where the differ-

ence betweel® andN? is not as great.
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approximate solution should be in the asymptotic region for&milarly, a second difference based parameter should remain
valid error estimate. This observation leads to a somewhatdivided to give the same behavior.

different strategy than that usually followed when using fea- 52 20.+ 72
ture detection. Feature detectors generally perform well even, _ _(pj - G102+ D12 = 5> % 9)
when starting from a very coarse grid, making possible many / ® ® T

cycles of adaptive refinement. For thEE based refinement, i ,

our strategy is to start with a fairly refined initial grid, and "€ 1-D refinement parameters in egs. (8) and (9) can be
only use two or three additional cyclesLdiE driven adap- extended_usmg a finite volume approach. This produces a
tive refinement. In the examples here the initial grid us&§Ctor refinement parameter, with components for each of the
geometry based refinement only, but initial grids generat€§!'s d|me_n3|ontﬁ. The first difference based refinement
from feature-detection based refinement could also be usefarameter in thie™ direction of Celll Is:

. . . ) (92 k)
2.5 Prespecified Adaptation Regions rik = hiy e 2

Both theLTE estimates and feature detection approaches suf- @

fer from the difficulty of localizing them to regions of inter-wherek is the unit vector in thé' direction.

est. For example, errors in the wake behind a wing persist it se vector refinement parameters can be used to drive both
quite a distance downstream. However, if a user is interest P

in the pressure distribution on the wing, research sugge&gtmp'c and anisotropic cell subdivision as discussed in ref-

that the wake region doesn’t need much mesh refinement Ty oo, [4], and a similar approach may be used for the sec-

the present work we simply allow the user to define a pr8[ld difference based parameters.
specified (Cartesian) region in which adaptation is permitteBopular choices op are the density, velocity magnitude or
While not particularly elegant, this approach is adequate sometimes the local static pressure. In addition, combinations

(10)

practice. of these scalars are also possible. The investigations in sec-
tion 4 examine the use of both density and velocity magni-
2.6 Feature Detection tude for detection.

Feature detection attempts to use the current discrete solution

to determine where the mesh needs enhancement. Comr8on An Optimal Strategy for h-Refinement
schemes use first or second-order undivided differences aﬁg daptati trat ks t fine th h using th
gradient information of various flow quantities. They attem € adaptation strategy seexs 1o refine theé mesh using the

o"5mooth ou” computational pace i opes of poducing . oy, o ONer refnemert parameters fom 52 1o
uniform error distribution. P y 9

parameters from section 2 as input and returns a boolean
Since the link between flow features and truncation error figfinement tag for each cell in the fine mesh. Algorithm
not as formal as the Richardson-lIKEE estimates discussed outlines the adaptation procedure.
earlier, approaches in the literature vary significantly an . i .
ewerything from gradients and second derivatives to unscal&gomhm A: Adaptation Strategy
and scaled differences have been UgEdA15126] Input: Vector of normalized refinement parame-

In 1991 Warreret al[26! showed that since gradients and sec- ters for each cell on fine mesh,

ond derivatives stay approximately constant with mesh Output: Vector of cells tagged fbrrefinementt
refinement, they make poor refinement parameters. A ceIIA
with a high gradient will continue to have a high gradient
ewen after subdivision. From the standpoint of grid conver-
gence, we note that if the refinement parameter is to act as a
substitute for the re&lTE it should have the same asymptotic A.2 Rules: Modify the set of tagged cells to ensure the
behavior as theTE in smooth regions of the flow. Forpfg- validity and smoothness of the output mesh.

order scheme, this means that halving the mesh should A 5 1 guffer Add buffer layers of tagged cells.
reduce the error by’2

.1 Tag: Apply the adaptation criteria(*) to the normal-
ized refinement parameter to produce a vector of
tagged cells.T = a(r)

T« ry(T)
TheLTE of a second-order scheme reduces by a factor of 4 A 5 5 gmoothnessFilter for island/void suppression.
with 2:1 refinement. For a first-difference based quantity to T o r(f)

mimic this behavior it must be scaled by the local mesh size, o . )
h. In one dimension, this leads to a first difference based A.2.3 Validity: Ensure adaptation boundaries do not
refinement parameter of the form: exceed 2:11 — r/(T)
A A(p]. 12 P j ®) A.3 Outputfinal vector of tagged celfs  for subdivision.

r. = h—* = h. —=

J J (p] J (p]
which is a normalized version of the first difference paramé- Eq. (9) differs from that presented in ref. [26] (eq. 15)
ter advocated by Warrest al[26] since their parameter is re-scaled by the local mesh dimen-

sion and will therefore vanidlasterthan theLTE as the
mesh size is decreased.
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The final set of tagged cells outputAm3 is thenh-refined
an_d the solution vector is initialized on the new fine mesh Mean/Median/Mode
using the prolongation operator from the multigrid scheme. |
Taking this new fine mesh as input, the automatic coarse -~

mesh generator in [17] prepares the multigrid mesh hierar- | Refinement
chy, and the solver restarts. Threshold

# of cells

In the following sub-sections we present a new strategy for

reducing the refinement parameters to some predetermined
level. The method is optimal since accomplishes this task as
fast as possible. In addition the method ensures that the per-
missible level of the refinement parameter chosen at the out-

set will not vary as the mesh and solution evolve. @

3.1 Equidistribution of Refinement Parameters . _ . Refinemént Partimeter

e . ) ) . Figure 6:ldealized distribution of refinement parameters
Equidistributionaims at producing a mesh which contains prior to h-refinement. Regioa containsN, cells.
the same level of refinement parameter in each cell. Since the . : : .
refinement parameters are stand-ins for the local truncatiL\ll‘e most strategies for adaptation, the paradigm of Alg.
error, this goal spreads the remaining discretization error d@ Start with some initial distribution of refinement parame-
evenly over the domain. As this level is reduced, the methd@rs: and dr_|ve.th|s distribution toward the idealized distribu-
is guaranteed to converge to the correct solution. This prin@" shown in fig. 5.
ple guards against over-resolving some features of the flgdgure 6 shows the Gaussian-like distribution of refinement
while overlooking others. parameters which serves as a model for the histogram prior to
In practice, equidistribution is somewhat over-conservatigreéfinement. A common approach found in the literature is
most of the time. It assumes that all errors are equally impdp-Set the refinement threshold to some frac]t[|£)6r]1 of a standard
tant to the simulation, and this is certainly not the case méfviation above the mean of the distributid
of the time. However, without additional guidance abo , :
what is important for a particular simulation,gequidistributio -2 A Fresh Look at Refinement Histograms
simply ensures that everything in the simulation is equalfyigure 7 shows an actual refinement histogram resulting from
correct. In addition, if a method can control tieE distribu- ~ a coarse grid simulation (3775 cells) of flow over an ONERA
tion to achieve equidistribution, then it can control the errd¥!6 wing at transonic conditiofS). This plot bears little
to achieve a different goal. Its easy to conceive of inverse-dig€semblance to the idealized Gaussian-like model shown in
tance weightings or error weightings that take the local chdigure 6. After normalization, the refinement parameters lie
acteristics into account in order to identify those errors thgtween 0 and 1. The mean value is 0.011 but the standard

have the strongest impact on the output functionals of intéteviation 0.04. Moreover, fully 82% of the cells lie below the
est. mean, and almost 50% hal¢< 0.001 . As a consequence of

. h he hi  refi . this extreme disparity in scales, setting the threshplahy
Figure 5 shows the histogram of refinement parameters iyace apove the mean addresses the error in only a handful of
mesh which has achieved equidistribution. Since all cells Jje most severe cells. Only after the very worst errors are
the domain have the same error, they fall in the same bin, a¢,ceq by many cell refinements will error in the bulk of the
the histogram looks like a delta function whose height {§omain be addressed. In shocked flows, the refinement

Neells parameter will be highest in cells with shocks or other strong
4000 T T T T
Neells| — — — — — — histogram :: del(vmag)
3000 —
] g
3 P
“‘Q\ = 2000 § —
* b
(=}
FH
1000 f 1
OL_L L | L | L f
0 0.2 0.4 0.6 08 1
Refinement Param

R t P £ ) . .
¢finement Parameter Figure 7: Histogram of adaptation parameter for a

Figure 5:ldealized hiStOgram of refinement pal’ameters coarse mesh simulation of flow around an ONERA
in a mesh which has achieved equidistribution. M6 wing at transonic conditiofs.
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Figure 8:Histogram of data from fig.7 computed using Refinemént Parameter

10g2(\;\) rather than the raw refinement parameter. ~ Figure 9: hrefinement moves the cells in regimto the left
according to the order of accuracy of the schema. If

non-linear features. As a consequence, this approach will containsN, cells, thera* containsm N, cells, wherem
inadvertently result in a refinement process which over- IS the number of children produced by refining a cell.
resolves shocks and other severe features without ever

addressing smooth regions of the flow. Oversights such 2dbsequent refinements will add to this same peak, and the
these have been shown to produce an adaptive proce et level of error will remain constant as the mesh evolves.

which can actually converge to the wrong solUebn Itis interesting to note that if the threshold is chosen above or
below than this value the target error level will continue to

In earlier workl we advocated a filtering approach whichmigrate higher or lower (respectively) with subsequent cell
removed cells containing shocks or other strong featuresrifinements.

an attempt to clean up the histogram prior to computing t

e ) .
mean and standard deviation. Even this approach, however§St s refinement moves cells to the left on the histogram,
dubious given the huge disparity in scales. coarsening transfers cells to the right. In the absence of

. . ) coarsening, these low-error cells will remain in the histogram
An alternative approach for compressing the scales in the digrd appear as a “tail” to the left of the peak value. Figure 10
tribution is to simply take the log of the refinement parametglustrates the evolving histogram. With the threshold chosen
prior to binning up the histogram. Figure 8 shows the histes described above, newly refined cells will not alter the his-
gram of the same data as in figuteout computed using togram to the left of the peak value, and therefore no newly
log,(|r]) rather than simplyr| . The mean value of this newefined cells can ever end up in this tail. Since they were celis
distribution is -6.4 and the standard deviation is 4.3. Tha the original unadapted mesh, this tail contains only coarse
rescaled data much more closely resembles the idealized dilis, and since coarse cells fill space very quickly, there can-
tribution in figure 5 and values of the mean, median angbt be very many of them in the domain as compared to the

B
=)

(]
=
T

mode are within 1.5 units of each other. number of highly refined cells in the peak. In addition, since
) ) the peak was built via cell subdivision, and the number of
3.3 Optimal Threshold Selection children produced per cell is generally constant, the growth

The motivation for choosing base 2 for the logarithms used &pproaching the peak from the left will be very raipd.
rescale the refinement parameters in the proceeding section
becomes clear when selecting an appropriate threshold. Near
grid convergence, each 2:1 cell refinement usipﬁ‘—&rder
scheme will reduce theTE by a factor of B. With 2:1 cell
refinement and the present second-order scheme, the children
of anh-refined cell will therefore get translated an absolute
distance of 2 units to the left on these base-2 histograms. Fig-
ure 9 illustrates this process. If there Bgcells in regiora

of figure9, and each cell is subdivided intochildren, then

a* will containm N, new cells.

# of cells

If our goal is equidistribution, then we desire to build the
delta function of figure 5. An optimal method constructs
these as rapidly as possible. Assuming that the histogram is
decreasing to the right of the modal value, the new histogram
grows most rapidly if the highest point&f is placed on top "~ Refinement Paraneter’

of the mode of the existing distribution. Since the cella in _ . . ,
move 2 units to the left, the threshold which builds the hig#gure 10:Evolution of a histogram for a mesh without
est new peak is identically 2. coarsening.

Coarser cells
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Skeptics may point out that setting the adaptation threshold
to its optimal value removes the user’s “control” of the adap-
tive process. While this is precisely the goal of automation,
there is a clear need for a user to be able to have some control
over the level of error in the final solution.

Since the location of the new peak can be controlled by
adjusting the threshold, the most efficient way to establish a
desired location of this peak is to set it as early as possible
(i.e. the first adaptation cycle). Subsequent adaptations will
then continue to build on this same peak using the optimal
threshold. This allows the user to set a desirable error level
based upon the histogram of the unadapted coarse mesh, and
then drive the refinement hands-free.

3.4 An lllustrative Example

Using the coarse mesh simulation from the base-2 histogram
in figure 8, figure 11 shows the evolution of the histogram in
this simulation over the next 5 adaptation cycles. This exam-
ple clearly shows the rapid growth of the peak in the histo-
gram confirming its approach toward equidistribution of the
refinement parameter.

Since this is a real 3-D transonic flow, several issues merit
discussion. Adaptation was driven by the undivided first dif-
ference of velocity magnitude scaled by the local mesh
dimension as presented in §2.6. The adaptive procedure in
Algorithm A tagged cells according to adaptation criteria,
and these tags were then modified to satisfy the smoothness
and mesh validity rules detailedAn2. The adaptation crite-

ria used in this example was:

% _ ad
a) = 5! 7 > I *2g, (11)
0 0 otherwise 0

where |7| is the mean value of the magnitude of the refine-
ment parameter rather than the precise modal value as called
for by the theoretical development earlier in this section. Of
course for the narrow peaked histograms shown in the figure,
the mean is close to the mode - it is within one unit at every
cycle after the first. Nevertheless one would expect somewhat
better performance if the location of the true peak was used.

4 Numerical Examples and Discussion

The LTE estimates and feature detection approaches in §2
have been applied to both simple and complex configurations
in three dimensions. This section begins by presenting results
showing that, when combined with theefinement strategy

of 83, both can provide valid approaches to achieve grid-con-
verged solutions. We then present adapted solutions on two
complex configurations to demonstrate the robustness of the
procedure when run “hands-off” on real-world complex con-
figurations.

Figure 11: Evolution of histogram through 5 adaptat
cycles for transonic ONERA M6 wing case using

# of Cells in B

Ils in Bin

¢l

# of C

Cells in Bin

#of

# of Cells in Bin

n

4000

#ol Cells in B
]
E
T

1000~

3000~

T T T
histogram :: 52897 cells

14000

10000

30000

0000

10000

0

histogram :: 150719 cells

-15

T
histogram == 395710 cells

-20

T0000

60000

50000

40000

30000

20000

10000

bistogram :: 874115 cells

-20

-15 -10
log_2(Refinement Param)

optimal threshold.

-5

0



American Institute of Aeronautics and Astronautics, AIAA Paper 2002-0863

: It ; Lo — T T
F EPH— ﬁFj 4 o Ty g i T T
sl 1"3“’0
A

—
7
+

s

Figure 12a:Flow over an ONERA M6 wing &l =0.84 Figure 12b:Flow over an ONERA M6 wing &, =0.84

and a = 3.06°, adaptation driven by-estimates of and o = 3.06°, adaptation driven using scaled first
LTE in density. The final mesh contains 1.8M cells differences of velocity magnitude. The final mesh
contains 1.9M cells
4.1 ONERA M6 Wing adaptation cycle suggesting that the results are grid con-

In [17] the baseline Euler solver was validated using the wel€rged.

known ONERA M6 wing_exe}mpI@?’] This case considers Ljft and drag coefficients for-extrapolation were: 0.3041
the transonic flow over this wing bf,, =0.84 andx = 3.06°.  and 0.0117 while those the feature-detection were 0.3042 and
Although viscosity was obviously present in the experimen,0116. Comparison between the two simulations reveals a
the case has been widely studied using inviscid solvers, angiflerence of less than 0.04% in the magnitude of the total
multitude of Euler solutions are available in the literature fabrce on the wing, and the final meshes have cell counts
comparison. within 6% of each other.

This flow was computed using both the multileveixtrapo-  Figure 13 shows convergence of tig profile at the 44%

lation LTE estimates and scaled first-difference (eq.10) basefian station and includes an overplot of the experimental data
feature detection using = as a refinement parameter.

Figure 12a displays both the mesh and solution resulting [~~~ "~ """~ T
from the LTE based adaptation, while 12b contains these ‘ TR
same plots using feature detection. In figure 127terap- i - ggg}gg
olation analysis used an initial mesh with 9 levels of geome-

try based refinement and then an additional two cycles of 45
solution-based refinement following the philosophy of §2.4. &
The final mesh shown contains 1.8M cells. The feature detec-
tion based results in figure 12b began on a mesh created witt

5 levels of geometry-based adaptation and about 30K cells

followed by 6 cycles of adaptation. The final mesh contained 054
1.9M cells. After 5 levels of adaptive refinement, the mesh R o
contained about 900K cells and integrated quantities (normal, ' 7" Local chord fraction (x/c)

axial and side force) were virtually the same as thoseFigure 13:Pressure profiles from transonic ONERA M6
obtained on the final (1.9M cell) mesh. The integrated quanti- ~ wing case at 44% span showing evolution of@ge
ties for both examples changed by less than 0.1% in the last history over the last 3 adaptation cycles.

-9-
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for the simulation in figure 12%). Behavior at this span sta-
tion is typical and shows convergence of the adaptive proce
over the last 4 adaptation cycles. In the figure, the profiles
the solution after 5 and 6 adaptation cycles are essentic
indistinguishable. Comparison with the experimental data
generally good and shows the same discrepancies reportec
other inviscid simulations of this viscous flow. In particular
the separation bubble following the rear shock is not mo
eled, and this shock is positioned slightly behind that in tt
experiment.

4.2 Complex Configurations

Figures 14 and 15 display the first of two examples showit
real-world applications of the adaptation module on comple
geometry. The supersonic canard-controlled missile geon
try in figure 14a contains several features which make it chi
lenging to simulate. At angle-of-attack, or any time th
canards are deflected, they will create vortices which mu

interact with the tail fins of the missile. Due to the high fineEigure 15: Velocity magnitude contours for flow over a
ness ratio of the missile, these vortices must convect over 30 canard-controlied missile of in fig. 14 M, =16 at
canard chord lengths before reaching the tail. Clearly, excess & = 3° With the canards deflected 15° (nose up).
numerical dissipation can easily destroy this important inter- ) ) L

action. In addition, the disparity in length scales on the geor{Personic flow over this missile was computed at zero
etry makes this simulation challenging. The canard chord §¢grees roll, andV, =16 ata =3°. The canards are
only ~1/48" of the body length. The simulation must resolvéleflected 15° (nose up). These conditions give a reasonably
not only fine geometric scales like the leading and trailingfrONg interaction between the canard tip vortices and the lee-
edges of the canards, but also the bow shock on the missft@rd pair of the interdigitated tail fins.

and the shock system generated by the canards themselFggure 15 shows contours of velocity magnitude in the dis-
Inviscid overset (structured) grid simulations with the Army'grete solution of this flow on the adapted mesh shown in fig-
OVERFLOW-D solver used over 30M points to resolve th@re 14. The refinement parameter in equation (10) based on

features of this flow fielf’] density was used to drive the adaptive process. Both figures
) clearly display the trajectory of the canard vortex system as

a) top view - they convect down the body. The final mesh has 4.5M cells
C - and used 6 cycles of adaptive refinement, the last 3 of which

u were confined to the pre-specified adaptation box illustrated.

b) Several axial cutting planes in figure 15 display the evolution

o . of the canard vortex as it travels down the missile body. The
i Wﬁmm computed normal force coefficient on the final mesh matches
‘ ] H T i [ f the inviscid results in [27] to within 3%.

ap i One interesting aspect of the missile simulation is that with

I the adaptive strategy outlined in 83 and the refinement
parameter from equation (10), the canard vortex and other
important smooth features in the flow are refined to the same
level as the shocks. Thus the case can be made that the
shocks are not receiving excessive attention from the refine-
ment scheme.

Hr
l%ﬁ !
=
e

"
T

This observation is further supported by the space-shuttle
configuration displayed in figures 16-18. In this case the
model was composed of 22 separate components, and
included spoilers, flaps, rudders, engine bells, and other geo-
metric detail. While the elevons and spoilers are nominally
undeflected, some gaps exist, and there is flow leakage near
these control surfaces.

X \
AT

-

s

"
-

>
AT

EREY

=

SeEgsc
Figure 14: Geometry and adapted mesh for canard-con- . . .
trolled missile example. The final mesh has 4.5M cells 1he_half-body, power-off configuration was simulated at

and used 6 cycles of adaptive refinement, the last 3 oflw = 1.5 anda = 8°, and refinement was focused in a box
which were confined to the pre-specified adaptation €Xtending 3 body lengths in the crossfoot directions truncated

box illustrated. just downstream of the orbiter. Figures 16-18 all display the
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Figure 16:Computational mesh and velocity contours of

solution for orbiter simulation &1, = 1.5 andx = 8°.
The final mesh contains 8.5M cells.

pods, etc. all producing massive curved shocks that are cap-
tured by the refinement. The curvature of these shocks results
in strongly non-linear flow downstream and the refinement
extends into these regions. In addition, both the wing tip vor-
tex, and a vortex emanating from the gap between control
surfaces are evident in this figure.

Figure 17 provides additional insight, displaying both the
mesh and solution from a vantage point behind and above the
port wing. The cutting plane in this view is located mid-way
over the starboard wing, and some gaps between the control
surfaces are visible. The bow, canopy, wing and trailing edge
shocks are all clearly visible in this view. Figure 18 is a pro-
file shot which contains a cutting plane through the symmetry
plane to provides a better view of the canopy and bow
shocks.

5 Conclusions and Future Work

We have presented Cartesian mesh adaptation strategies
driven by either local truncation error estimates or feature
detection. The adaptation module adds a solution-based mesh
refinement capability to the geometry-based refinement of
the Cartesian mesh generator. Both simple studies and highly
complex 3D examples were presented with very high resolu-

solution using contours of velocity magnitude, and thg,, "demonstrating the robustness and utility of the adapta-

scaled, undivided first difference of density was used as
adaptation parameter. Five cycles adaptation were carried
(hands-off) from an initially geometry refined mesh, produ

6n. The module produces several million Cartesian cells-
Bf-minute on desktop computers and was demonstrated on
somplex example geometries with <iglls.

ing a final mesh with 8.5M cells. Figure 16 shows a nose-on ) o i ] ]

view of the grid mirrored to the starboard side, with contou8n interesting highlight of this work is an optimal strategy
of the solution on the port side. While the bow and winfpr h-refinement based on lg) histograms. This strategy
shocks are reasonably well resolved, nearly equal mesh spa¢dds many of the pitfalls of the mean and standard devia-
ing is used in much of the near-body lee-side flow. The flow

structure is reasonably complex, with the body, wing, OMS

| TR Hﬁ e s

Figure 17:Rear three-quarter view of orbiter geometry and mesh showing gaps between control surfaces and cutting plane
through solution at a mid-span locatidm,, = 1.5,a = 8°, velocity contours
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regions could be automatically generated using characteristic
information from the flow to appropriately weight or
unweight refinement parameters depending upon the cell's
location in the domain and the input Mach number.
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on all of the “quality” meshes are all slightly irregular. Sincate uniform meshes of equilateral tetrahedra in 3-D. As a
ewery stencil is irregular, each is polluted to some degree bysult, tetrahedral mesh generators typically resort to produc-
stretching, cancellation of errors cannot occur, and the resimfy “quality” meshes that guarantee some angle criterion is
is a marked degradation in accuracy. everywhere met, just as Ruppert’'s Delaunay algorithm does

These results contrast with earlier results for a similar progl- sl

lem using nearly-equilateral triang[lgg. That investigation The structured quad and right-triangular meshes are substan-
showed that regular equilateral triangles performed as wallly smoother than the quality triangular meshes. Neverthe-
(or better) than regular quads or right triangles. In this cadess theLTE measurements indicate that even the mild
however, the “quality” mesh is not equilateral, although altregularity in their stencil degrades their performance. While
the triangles are well formed as guaranteed by the Ruppelitth provide second-order accuracy, the absolute error level
2-D delaunay technique in ref.[20]. Quality 2-D meshes weis from 6 to 10 times worse than the Cartesian grid’s perfor-
chosen for this investigation since it is not possible to genenance where irregularity is confined to the boundary.

Cartesian Mesh with Embedded Boundary Body-Fit Right Triangular Mesh
# of Control volumes  Measured (density) Error # of Control volumes  Measured [density) Error
138 0.03065 144 0.37926
507 0.00930 525 0.07571
1928 0.00246 2001 0.01565
7549 0.00059 Asymptotic slope = 2.11 7809 0.00347 Asymptotic slope = 2.28
Body-Fit Structured (Quad) Mesh Body-Fit Quality Triangular Mesh
# of Control volumes  Measured L1 (density) Error # of Control volumes  Measured [density) Error
144 0.30998 128 0.52552
525 0.09223 505 0.22529
2001 0.02422 1918 0.11936
7809 0.00629 Asymptotic slope = 1.94 7490 0.05940 Asymptotic slope = 1.02

Table A.1 L;—Norm of LTE in density for each of the 16 meshes used in the supersonic vortex investigation. The
“Quality” triangulation meshes were produced using the quality Delaunay triangulation algorithm of ref.[20] and
had no angle less than 29°.
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